

SunCe,Chem

PhotoElectroCatalytic Device for Sun-Driven CO₂ conversion into Green Chemicals

Miriam Diaz de los Bernardos, Eurecat

#EUGreenWeek 2021 PARTNER EVENT

SunCo,Chem Consortium

14 partners from 8 European countries

SunCo_Chem The European Chemical Industry

Transition towards low-emission energy technologies

Images from: De Luna et al., Science, 2019, 364, eaav3506

Sunce Chem Sequential pathways to higher chemicals via CO electrosynthesis

Higher CO selectivity and conversion efficiencies in comparison with other products

Troels Skrydstrup, Nature Catalysis, 2018, 1, 244-254

SunCe,Chem Concept

SUN-driven production of energy and high-value chemicals

• The project develops a photoelectrocatalytic tandem reactor (TPER) to manufacture valuable chemical oxo-products from renewable energies based on CO₂, H₂O and solar energy.

Compact PEC design with easier scalability to be used as artificial leaf

TPER COMPONENTS

Hybrid photocathode for CO₂ conversion to oxo-products

Photoanode for water oxidation

Transparent bipolar membrane (TBM)

CO₂ capture and concentration stage

SunCo,Chem Objective

Three sustainable oxo-products produced from CO₂

Oxo-products produced from the use of CO₂ as a renewable carbon • source, in comparison to actual routes based on fossil fuels.

GLYCOLIC ACID Hydroformylation of formaldehyde

VALERALDHEYDE Hydroformylation of Butene (DOW waste by-product)

Hydroformylation of limonene

Building block applied in dying and tanning, flavoring preservative and emulsion additive.

avantium

hem

Sun

Building block applied as food flavouring, in resin and rubber products

Building block applied as a perfuming agent, in personal care and house cleaning products

SunCo,Chem TPEC Device

nem

Three-chamber configuration:

ANODIC CHAMBER

- Water oxidation to O₂

CATHODIC CHAMBER

Photo- and non-photoassisted coupled reactions

- Selective PEC CO₂ reduction to CO
- CO-hydroformylation of OXO-products
 Ionic Liquids electrolytes
 MEA via a transparent bipolar membrane
 Low-cost PV solar cells to boost internal photo-voltage

FLUE GAS & CO₂ CAPTURE CHAMBER

- CO₂ capture from flue gas stream with an asymmetric polysulfone membrane
- CO₂ concentration in lonic Liquids

SunC Chem Project Phases

TRL 3

Development of materials and components of the TPER cell

Upscaling, testing and validation of the **TPER** device

Integration and optimisation of materials and components

Socio-economic and environmental impact assessment

TRL 5

WP1

PEC Cell Materials Development **WP2**

 CO_2 Capture and **Concentration Materials** Development

WP3 **TPER Components** Integration

WP4

Design, assembling and testing of final TPER prototype

WP5 Impact Assessment WP6 **Exploitation and Dissemination**

TPER $(1m^2)$ will be validated at the production facility of IFF

SunCochem Technical Requirements

SunCe,Chem Technical Challenges

Photo-electrodes development

Multi-heterojunction photoelectrodes for Z-scheme mimicking:

- Metal oxide nanoparticles
- Molecular organometallic chromophores
- Molecular catalysts for water oxidation, CO₂ reduction and hydroformylation

Transparent bipolar membrane development

Bipolar Membrane-electrode assembly to maximize catalyst performance:

- Constant pH and ionic gradients at both compartments
- Use of different electrolytes

Chem

Sun(

Z-Sheme Design

This project has received funding from the EU's Horizon 2020 research and innovation programme under grant agreement No 862192.

window

SunCo,Chem Route to Market

SunCe,Chem

SunCo,Chem Team eurecat

🔗 www.suncochem.eu

🍯 @SunCoChem_EU

info@suncochem.eu

SunCe,Chem

PhotoElectroCatalytic Device for Sun-Driven CO₂ conversion into Green Chemicals

Miriam Diaz de los Bernardos, Eurecat

4th June 2021

#EUGreenWeek 2021 PARTNER EVENT

